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Theory of Freezing: The Inhomogeneous 
Ornstein-Zernike Equation I 

J. D. McCoy  2 and A. D. J. Haymet  2'3 

We present a new freezing theory based on the inhomogeneous Ornstein- 
Zernike equation. The new theory is nonperturbative, in the sense that crystal 
and liquid are treated at the same level of approximation. This is in contrast to 
the popular density functional theory of freezing, which uses the liquid as a 
reference state for perturbation theory. Due to the demanding nature of the 
numerical method, preliminary calculations are presented for a model 
problem--which, in the strictest sense, is unphysical--namely, the freezing of 
hard disks in two dimensions. We also explore a generalized Percus-Yevick 
closure appropriate for the crystal. 
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1. I N T R O D U C T I O N  

This paper introduces a new theory for the freezing of simple liquids. The 
theory draws upon ideas from bulk liquid theory developed by Lovett  et al. 
[ 1 ]  and Werthiem [ 2 ]  and extended very recently by Plischke and 
Henderson [3 -7 ] .  The new freezing theory is labeled "nonperturbat ive"  to 
distinguish it from the "density functional" theory of freezing [8 ] ,  which is 
based on the rmodynamic  per turbat ion theory and which has been 
developed extensively recently [ 8 - 3 4 ]  by us and many  other workers. 

In  summary,  the new theory seeks to place the prediction of the struc- 
ture (and hence the thermodynamics)  of  ordered crystals (and, in fact, 
quasiperiodic materials [ 1 0 ] )  on the same footing as the structure of 
liquids, by using integral equat ions [ 7 ]  to predict the full position- and 
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angle-dependent pair correlation function g(r~, r2) of the crystal. From this 
microscopic structural information, the free energy and other thermo- 
dynamic properties of the crystal can be calculated. By comparison with 
existing integral equation theories for the liquid phase, we intend to predict 
the stability of the crystal and, hence, the phase diagram. 

The formalism of the new theory is stated in Section2, and 
preliminary results are presented in Section 3. A proposed modification of 
the Percus-Yevick closure--in essence, a new integral equation closure 
appropriate for crystals--is introduced in Section 4, and its numerical 
properties are explored in Section 5. Our conclusions are collected in 
Section 6. 

It should be emphasized that this theory will not (nor is it intended to) 
replace the density functional (DF) theory as a practical means of 
predicting phase diagrams, the crystal/melt interface, and the nucleation of 
crystals from the melt [8]. It is intended as a more fundamental (but still 
not exact) theory which avoids one of the two main approximations in DF 
theory and tests the most radical assumptions in that theory. The impor- 
tance of freezing cannot be overstated. At low temperatures, the freezing 
transition is observed in every material, with the possible exception of 
liquid helium at low pressures. At present there is no first-principles theory 
that can predict the phase diagram of a given material, even starting from a 
complete knowledge of the forces between the constituent molecules. 

2. THEORY 

In theoretical calculations of the microscopic structure of the liquid 
state, it has proved useful to work with the Ornstein Zedrnike (OZ) 
equation. The OZ equation is, in essence, a definition of the direct 
correlation function c(rl, r2) in terms of the pair correlation function 
h(rl, r2) and the singlet density p(q). The form of this definition is 
obtained either by partial summation of diagrams or by density functional 
theory [9]. We adopt the latter approach (although the methods are 
equivalent). 

Calculation of the Fourier transform of the structure factor z(r,, r2), 
or a closely related function such as the pair correlation function, is usually 
the primary objective of a microscopic theory. The direct correlation 
function often is viewed as no more than a tool to be used in achieving this 
objective. However, since the direct correlation function is related to the 
change in the free energy upon variation of the singlet density, its physical 
significance has been exploited in mean field theories of phase transitions, 
in which this response of the free energy to a density variation is the crucial 
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question. In addition, this feature is also useful in developing closures, as 
shown below. 

The Fourier transform of the structure factor is an appropriate place 
to begin a more detailed discussion of the OZ equation. This quantity is 
the response of p(rl) to a variation in the function ~'(r2), 

~p(rl) 
- -  - z ( r l ,  r2) (1)  
6~(r2)  

where kT~(r2) is the chemical potential of the system minus the external 
field, k is the Boltzmann constant, and T is the temperature. The pair 
correlation function is defined in terms of the structure factor transform by 

Z(q, r2) = 6(Irl - r21) p(q) + p(rl) p(r2) h(q, r2) (2) 

where 6 ( ] r l -  r21) is the Dirac delta function. The singlet density is related 
to the field ~(r2) by a Boltzmann-like expression: 

p(r) = e O(r) + ~(r) (3) 

where the deviation of p(r) from strictly Boltzmann-like behavior with 
respect to O(r) serves as a definition of the function C(r). Note that the 
arbitrary constant inherent in the definition of the chemical potential is 
used to absorb the proportionality constant. The functional derivative of 
O(r) with respect to p(r) yields 

&9(rl) ~ ( r l -  r2) 
- - -  C ( r l ,  r2) (4) 
~p(r2) p(r2) 

where the direct correlation function is defined to be 

6~(r~) 
- -  - c ( r l ,  r ~ )  ( 5 )  
6p(r2) 

Equation (4) is the functional inverse of the structure factor transform 
;~-~(r~, r2). The OZ equation is a statement of this inverse relationship: 

a( t r l  - r3l) = f d3r2 Z - l ( r l ,  r2) z(r2, r3) (6) 
d 

Upon substitution of Eqs. (2) and (4) into Eq. (6), the OZ equation can be 
written in its more familiar form: 

p(r,) h(r,, r3)=p(rl)e(r,, r2)+ f dZr2 p(rl) c(rl, r2) p(r2)h(r2, r3) (7) 
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It may seem that the OZ equation serves only to relate the unknown 
function h(rl, r2) to the equally unknown function c(rl, r2). Indeed, the use 
of the OZ equation makes sense only in conjunction with a second 
equation--known as a closure--which also relates h and c. In terms of 
density functional theory, the closure contains the physics of the problem. 
This problem can be stated simply as the minimization of the grand poten- 
tial free energy functional W[p(r)] with respect to the singlet density: 

6W 
- - = 0  (8) 
So(r) 

where this minimization is in the presence of an external field which 
produces a particle centered at a particular location ? in the system. This 
"unphysical" field is known as a particle generating (PG) field. The singlet 
density r which minimizes W[p(r)] can then be interpreted as 

fi(r) = po(r) g(r, ~) (9) 

where po(r) is the singlet density and g(r, ?)=h(r,  ~)+ 1, both in the 
absence of the PG field. One is not able to attempt an exact treatment of 
Eq. (8). Rather, an approximate functional form for W[p(r)] is introduced, 
and it is the approximate free energy functional which is minimized. The 
approximate W[p(r)] is usually taken to be 

flW= flW o + f dr p(r)[ln(p(r)/po(r)) - l ]  + I dr po(r) 

-- f  dr p(r)[O(r)-Oo(r)]-�89 f dr f dr'c(r,r')Ap(r)Ap(r') (10) 

where Ap(r)= p(r ) -  po(r), fl = 1/kT, and 0(r) differs from 0o(r) by the PG 
field. Equation (10) is the result of a functional Taylor series of the 
Helmholtz free energy in terms of the singlet density followed by Legendre 
transformation to the grand potential free energy. 

The formal minimization of Eq. (10) is 

O=ln[f(r)/po(r)]+flu(Ir-~l)-  f dr' c(r,r')Af(r) (11) 

where u ( [ r - f l )  is the PG field. Note that any external field which is 
present both before and after the PG field is applied will not appear in this 
closure. By substituting the relation (9) for r and with judicial use of 
the OZ equation, one finds the familiar hypernetted chain (HNC) closure: 

0 = In g(r, ~)+ flu(Jr--rl)-- [h(r, ~)-  c(r, ~)] (12) 
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Upon linearization, the HNC closure produces the equally familiar 
Percus-Yevick (PY) closure: 

c(r, ? ) =  g(r,  ~:)[1 - - e  ~u(Ir-~j)] (13) 

Both the PY and the HNC closure have been used extensively in theories 
of the liquid state with marked success. 

In our current work, we are interested in the solution of the PY 
equation for the case of nonconstant singlet density with a small or zero 
external field. Before we discuss the finer details of our calculations, we 
wish to comment on the applicability of Eq. (9) to the case of nonconstant 
density. In particular, we consider the limiting case of a symmetry breaking 
(SB) field. First, a brief digression on the role of the SB field in statistical 
mechanics is in order. For the case of a crystal without an external field, 
the singlet density would be found to be a constant if it were possible to 
solve exactly for the singlet density by way of the partition function. 
Nothing in the partition function prevents the crystal from drifting through 
space. Hence, even though the real singlet density is sharply peaked on a 
short time scale, the average given by the partition function is a long time 
average and so the density is a constant. The well-known solution to this 
predicament, due to Kirkwood, is the use of a symmetry breaking field. 
The symmetry breaking field is an infinitesimally small field located in a 
specific position in the unit cell. This, in effect, stops the crystal from 
drifting, and the singlet density given by the exact calculation with the 
symmetry breaking field is nonconstant. 

In the language of this paper, if Eq. (8) could be solved for the exact 
free energy functional without any external field, a constant singlet density 
would be found. If a SB field was incorporated into the free energy 
functional, Eq. (8) would give the singlet density po(r). Now consider the 
consequences of adding both a PG and a SB field to the free energy. Our 
hypothetical exact calculation would produce the exact singlet density for 
this case fi(r). The one remaining step to obtain the pair correlation 
function is the use of Eq. (9). The SB field serves to center the singlet den- 
sities in the unit cells. Equation (9) implies that a PG field can be located 
at any point in the unit cell without shifting the singlet densities of the 
entire crystal. We suspect that this is incorrect. Rather, we believe that the 
PG field would take on the role of the SB field and Eq. (9) would become 

~(r)  = po(r -- r) g ( r  -- ?, O) (14) 

for any position ? of the PG field. That is, the crystal would always be cen- 
tered about ~ rather than the position indicated by the SB field. If this line 
of reasoning is correct, one would wish to minimize the free energy in the 
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presence of a PG field but require that the singlet densities be constrained 
in a manner which localizes the effect of the PG field and does not shift the 
entire crystal. One check on the self-consistency of the calculation which we 
consider in the next section is 

f dr po(r) g(r, ~) po(~) = po(?) (15) 

where the integration is over any unit cell (of volume A) other than the one 
which contains the PG field and where the densities are normalized to one 
particle per unit cell. Notice that for the true po(r) and g(r, ~), Eq. (15) is 
exact. 

3. THE PY CLOSURE: RESULTS 

We have performed extensive calculations on two-dimensional systems 
with periodic order using the PY closure, and we now present here (i) our 
methodology for treating the numerical difficulties due to the large dimen- 
sionality of the two-point functions h(r, ~) and c(r, ?), (ii) selected results of 
our calculations for systems with Gaussian densities on a triangular lattice 
and (iii) a comment on the self-consistency of these results in light of 
Eq. (15). 

Consider the OZ equation as written in Eq. (7). There is a temptation 
at this point to divide through by p(rx); however, due to the sharply 
peaked nature of the Gaussian densities considered here, it is convenient to 
retain p(rl) and simply define the new functions: 

H(q, r2)= p(q) h(rl, r2) (16) 

C(rl, r2)= p(ri) c(q, r2) (17) 

Substituting these two definitions into Eq. (7) produces the form of the OZ 
equation which we have used in this work, 

H(r I , r2) = C(rl ,  r2) + f d3r2 C(rl ,  r2) H(r2,  r3) (18) 

It may seem that there would be an additional advantage to using 
functions which are weighted by the densities at both positions, that is, to 
use 

H*(rl, r2) = pU2(rl) h(rl, r2) Pl/z(r2) (19) 

rather than H(rl, r2). The nonzero values of H*(rl, r2) and C*(rl, r2) are 
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only for r~ and r 2 near density peaks, while the nonzero values of H(q, r2) 
and C(q, r2) exist for r~ near a density peak and for all r 2. However, the 
value of H(r  l, r2) and C(r~, r2) is needed only for rl and r 2 near density 
peaks for iteration of the OZ equation. Hence, the definitions of H and C 
encompass the benefits inherent in the use of H *  and C* in terms of 
restricting the necessary domain of the functions. The symmetric nature of 
H*  and C* does make programming slightly easier, but the choice of H 
and C is more in the spirit of the derivation. In either case, the resulting 
OZ equation has no explicit dependence on the singlet density. Instead, the 
chosen closure manifests a density dependence which one would not 
normally expect. In our case, we have used the Percus-Yevick (PY) 
closure, which is 

H(q,r2)=--p(rl), if Irl--r2] < ~  
(20) 

C(rl,r2)=O, if I r l - - r 2 ] > o  

where we have restricted our work to hard disks of diameter a. We have 
also restricted the singlet density to Gaussian peaks on a triangular lattice: 

p(rl ) = A(gep 2) -1 ~ e x p ( -  ]rl - R] 2/e2) 
R 

(21) 

where e is the Gaussian width, A is the average number of particles per unit 
cell, and R is one of the lattice vectors which depend on the nearest- 
neighbor separation d. 

The primary difficulty in working with nonconstant singlet densities is 
coping with the large dimensionality of the functions h and c. Even viewing 
the results is not straight forward; in order to plot h and c one must reduce 
the dimensionality in a physically meaningful manner. We have used two 
types of plots in this work. First, one of the coordinates is fixed, say rl = X, 
and the function h(X, r2) or c(X, r2) is plotted either as a contour or as a 
mesh plot where r 2 is the variable. Second, a density-weighted average is 
used to reduce the dimensionality even further. We denote these averages 
by a subscript a, for example, 

S dr, S dr2 P(rl) h(r,, r2) p(r2) g(lr, - r2t  - -  r )  
h.(r) = Sdr,~dr2p(q)p(r2)6(lr ,-r2l-r)  (22) 

Clearly, this average--as well as a number of other possible averages-- 
reduces to the liquid-state average for constant density. We are interested in 
the specific average ha(r ) because this function is related to the scattering 
intensity in experimental work. We have also examined the density- 
weighted direct correlation function Ca(r), although it is not clear that it 
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has physical significance. In any case, Ca(r ) is not related to the functional 
inverse of ha(r) in the same way that c(rl, r2) is related to the inverse of 
h(Q, Q)---except, of course, in the case of constant density. 

The application of the above equations is extremely computer inten- 
sive. We have used a coarse grid size and integrated over only the nearest- 
neighbor unit cells in an attempt to make the run times involved 
manageable. We used a grid of 90 points chosen in each unit cell at a dis- 
tance of no more than 0.25a from the center of the cell. (The short-ranged 
nature of H and C permit us to truncate at such short distances.) One may 
think that a much larger number of points would be easy to incorporate; 
however, even at 90 points, we must keep track of 16,200 values of the two- 
point functions. As a result, the convolution in the OZ equation involves of 
the order of 108 terms. To date we have attempted only Picard iteration 
procedures. The solutions were started with densities of small A and A was 
increased as far as 1. 

Our preliminary results seem to indicate that the direct correlation 
function--as defined above--diverges near A = 0.9. In Fig. 1 the pressure 
Pc (calculated from the compressibility equation and hence the direct 
correlation function) is plotted as a function of A for d =  1.10318a and 
e = 0.088a. Although the direct correlation function seems to diverge, the 

25.0 

,sP 

20.0 

15.0 

10.0 

j /  
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0.5 0.6 0.7 0.8 0.9 1.0 

A 

Fig. I. The reduced pressure tiP (in units of a -2) calculated 
from the compressibility equation as a function of the number  
of particles per unit cell A. 
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Fig. 2. The pair correlation function h(s, r) for fixed s, for e=0.088tr, d =  1.10318a, and 
A = 0.90. (a) Contour  plot of h(s, r). The center of the unit cell of the center unit cell is located 
in the center of the plot. The point s is toward the upper right corner as shown, and as a con- 
sequence, the large h(s, r) = - 1  area is to be centered on s. One can see traces of each of the 
six neighboring cells. (b) Mesh plot of h(s, r). The large peaks at the left have been clipped to 
20 % of their peak value. Notice that these back correlations are larger than the correlations 
in the s direction. 

1.0 

ho 0 I 0 

I I I I I I I -1.0 I 

0.5 1.0 1.5 

r 

Fig. 3. The density-weighted pair correlation function ha for 
e =0.088a, d =  1.10318cr, and A =0.90 (r in units of a). 

840/10/1-7 
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pair correlation function does not. In the case of large separation of the 
unit cells, we were able to recover the solution after the divergence and, 
consequently, to increase A to the value of 1. For the case of d =  1.10318a, 
we were able to track the solution only until the divergence. In Fig. 2, we 
show the function h(s, r) for the case (~=0.088a, d =  1.10318a, A=0.9) ,  
where s is displaced from the center in the unit cell. In Fig. 3 the density- 
weighted average is shown for the same case. 

There are several possible reasons for the violation of the consistency 
relation (15): (i) fundamental problems with the use of Eq. (9) for non- 
constant densities, (ii) the form of the approximate free energy [Eq. (10)], 
and (iii) the large grid used in our numerical calculations. The deviations 
are rather systematic for the latter to be the sole reason. 

4. A NEW, CONSTRAINED, PY CLOSURE 

Our preliminary numerical results, presented above, suggest that the 
self-consistency condition I-Eq. (15)] may not hold for solutions of the PY 
closure in a two-dimensional hard disk system with Gaussian singlet den- 
sities. This feature is still under investigation. In this section we propose a 
new closure which embodies Eq. (15) as a constraint. 

From Eq. (9), we formulate a set of constraints 

I~+ dr~(rlR)-A = 0  (23) 

where A +/~ indicates that the integration is over the unit cell located at 
lattice vector/~, po(r) is generalized to normalize the number of particles 
per unit cell to A, and fi(rl R) denotes the singlet density in the cell located 
at R. The functional to be minimized with the constraints is 

R = R  + R  

where the PG field is located at f in the located at R. The minimization of 
W* with respect to the undetermined multipliers 2e~(R) enforces the 
constraints (23). Note that each position of the PG field gives a new set of 
2's (the subscripts ? and/~) and that, in addition, each integrated cell has a 
different 2 (the variable R). The minimization of W* with respect to 
p(r[R) gives 

0 = l n  g(r, U) + /3u( I r -  F l ) -  [h(r, ~)-c(r, ?)] + 2,~(R) (25) 
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A similar equation can be written for a PG field in the cell at R. These two 
equations combine to give 

0 = In g(r, ~) + flu(Jr - rl) - [h(r, ~) - c(r, f)]  + ARa(f ) + Am~(r) (26) 

where ARg(f )=  2~a(R)/2. Equation (26) is the constrained version of the 
HNC closure. As before, rearrangement and linearization produce the PY 
closure (constrained): 

c ( r , ~ ) = g ( r , ~ ) { 1 - - e x p [ ~ u ( l r - - ~ l ) + A R ~ ( ~ ) + A ~ R ( r ) ] }  (27) 

Note that the multipliers A are related to each other by symmetry. Since 
g(r, ~) approaches unity at large separations, where the constraints are 
satisfied, the A's approach zero as I R -  R[ becomes large. 

In summary, the preliminary suggestion proposed in this section is 
that the OZ equation be solved with the constraint equations, (23) and 
(26), to obtain g(r, ~), c(r, ~), and AR,~(f), rather than the liquid-state 
method of solving the OZ equation with Eq. (13) for g(r, ~) and c(r, ~). In 
the next section we see the results of a simple parameterization of the 
multipliers A and the effect of this on the pair correlation function. 

5. RESULTS FOR THE CONSTRAINED PY CLOSURE 

We discuss first the general nature of the constraints A R~ (~). In Fig. 4 
we display a cell with its six nearest neighbors. For  a two-point function 

y 

I 

�9 

�9 

6 @ 

Fig. 4. The unit cells of the problem studied in this 
paper. Circles indicate the approximate range of the 
density peaks. The numbering and coordinate axes 
are used in our discussion. 
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which stretches from cell 0 to cell 1, the A's will play a role analogous to 
an external field interacting with the particles in cell 0 and cell l. These 
"potentials" are not necessarily symmetric about the center of the cell. Now 
consider a second set of A's between cell 0 and cell 2; the A's are the same 
as before, except that they are rotated in space by 60 ~ . 

For the case of Gaussian density given by e=0.088cr, d =  1.10318cr, 
and A = 0.7, the number of particles per unit cell A was calculated from 
Eq. (15) for each point in cell 0 by integrating over cell 1. This calculated 
value is denoted by Ac. We have found that for points in the half of cell 0 
with negative y values, the calculated value Ac is approximately correct. 
However, for points with positive y, the calculated value decreases steadily. 
At y = 0.25a, Ac is roughly 0.1. Since there is very little variation of Ac in 
the x direction, a choice of Al.o(ro) of the form 

Al,o(ro) = 0, if y o < 0  
(28) 

A l . o ( r o ) = - m y  o, if y o > 0  

is a reasonable first approximation for the constraint field. The subscripts 
0, 1 indicate that the two-point functions reach between cell 1 and cell 0, 
and ro is a point in cell 0 with y component Yo. It is possible to choose 
"external fields" which enforce the constraints. Figure 5 displays Ao,(r~) 
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_4. 

0.0 

-1.0 

-2.0 

-3,0 

-4.0 

-5.0 

-6.0 

-0.6 

.::.//:': 
I I I 

-0.2 0.2 0.6 

y 

i 

I 

1.0 1.4 1.8 

Fig. 5. The undetermined multipliers AI, 0 (solid line) and Ao, j 
(dotted line) which enforce the constraints for e=0.088a, 
d =  1.10318a, and A =0.70. They are plotted along the y axis of 
Fig. 4 (y in units of a), 
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..j. ,.v.....v ,.._ ,....v.:....,....... 

- 1 . 0  i I I I I I i i 

0.5 1.0 1.5 

r 

Fig. 6. The density-weighted pair correlation function h a 
without (solid line) and with (dotted line) the constraints 
enforced, for the case e = 0.088a, d =  1.10318a, and A =0.70 (r 
in units of a). 

and Al,o(ro) for this case. Figure 6 shows the density-weighted average 
ha(r) both before and after the constraints are imposed. Note the marked 
difference between the two. Clearly, Eq. (28) is very crude and the 
constraints have been enforced only in an approximate way, but this 
calculation suggests that generalizations of the PY closure are worth 
pursuing. 
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